

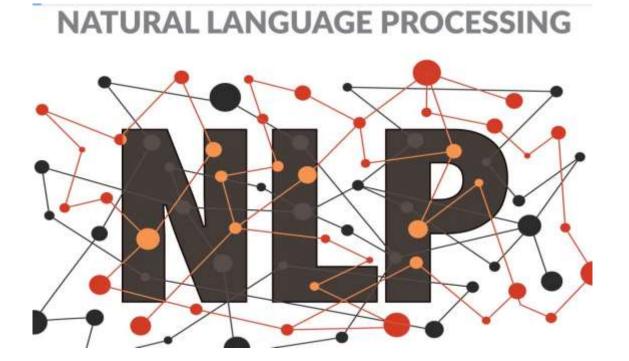
Dual Intents Graph Modeling for User-centric Group Discovery

Xixi Wu Yun Xiong* Yao Zhang 21210240043@m.fudan.edu.cn yunx@fudan.edu.cn yaozhang@fudan.edu.cn Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University Shanghai, China Yizhu Jiao yizhuj2@illinois.edu University of Illinois at Urbana-Champaign IL, USA Jiawei Zhang jiawei@ifmlab.org IFM Lab, Department of Computer Science, University of California, Davis CA, USA

2023_CIKM

code:https://github.com/WxxShirley/CIKM2023DiRec

2023.11.5 • ChongQing



1.Introduction

2.Method

3.Experiments

Introduction

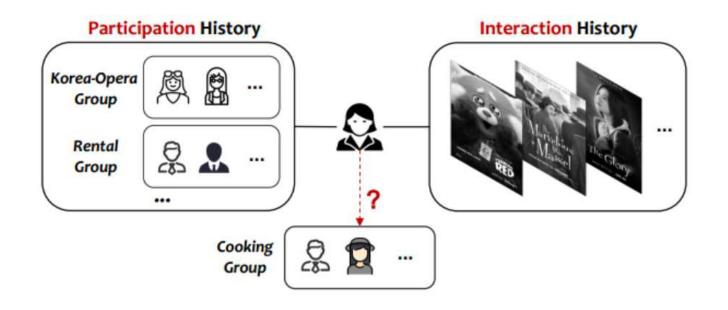
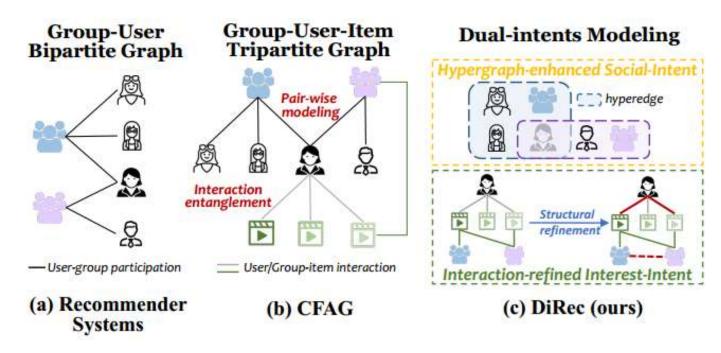


Figure 1: Illustration of User-centric Group Discovery (UGD) task on Douban platform. With group participation and item interactions, UGD aims to suggesting groups for users.

Existing recommender methods can not deal with this task as modeling user-group participation into a bipartite graph overlooks their item-side interests.

Although there exist a few works attempting to address this task, they still fall short in fully preserving the social context and ensuring effective interest representation learning.



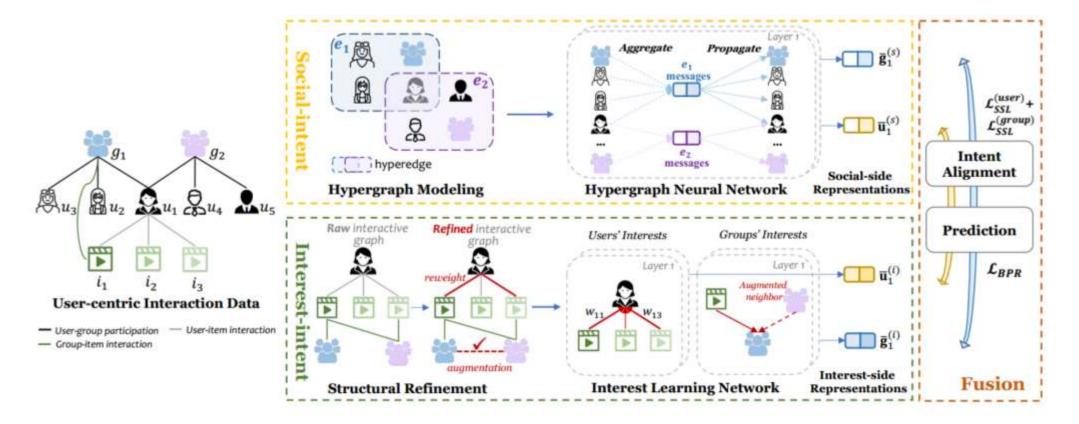
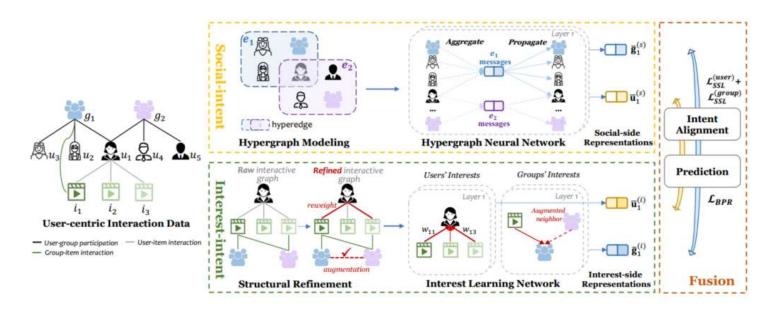


Figure 3: DiRec overview. In the left part, we present the interactive data between users, groups, and items (omit some groupitem edges to avoid link interference). We model users' inclination towards groups from dual intents, including social-intent and interest-intent. For social-intent, we leverage hyperegraph for relationship preservation and employ hypergraph neural networks for representation learning. As to interest-intent, we conduct structural refinement to uncover intricate user behavior patterns and item characteristics, leading to better interests learning. Finally, dual intents are fused for optimization.

Method



$$\mathbf{u}_{j}^{(s)}, \mathbf{u}_{j}^{(i)} = \mathbf{ExtractLayer}(\mathbf{u}_{j}), \quad (1)$$

ī

$$\overline{\mathbf{J}}^{(s)}, \overline{\mathbf{G}}^{(s)} = \mathbf{HyperGNN}_{\Theta_1}([\mathbf{U}^{(s)} \parallel \mathbf{G}^{(s)}], \mathbf{H}^{(s)}), (2)$$

$$\overline{\mathbf{J}}^{(i)} = \mathbf{GNN}_{\Theta_2}([\mathbf{U}^{(i)} \| \mathbf{I}], \mathbf{A}^{(u)}), \quad (3)$$

$$\overline{\mathbf{G}}^{(i)} = \mathbf{GNN}_{\Theta_3}([\mathbf{G}^{(i)} \| \mathbf{I}], \mathbf{A}^{(g)}), \quad (4)$$

Figure 3: DiRec overview. In the left part, we present the interactive data between users, groups, and items (omit some groupitem edges to avoid link interference). We model users' inclination towards groups from dual intents, including social-intent and interest-intent. For social-intent, we leverage hyperegraph for relationship preservation and employ hypergraph neural networks for representation learning. As to interest-intent, we conduct structural refinement to uncover intricate user behavior patterns and item characteristics, leading to better interests learning. Finally, dual intents are fused for optimization.

Method

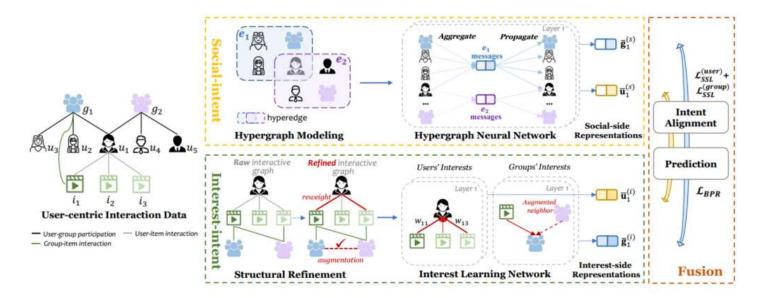


Figure 3: DiRec overview. In the left part, we present the interactive data between users, groups, and items (omit some groupitem edges to avoid link interference). We model users' inclination towards groups from dual intents, including social-intent and interest-intent. For social-intent, we leverage hyperegraph for relationship preservation and employ hypergraph neural networks for representation learning. As to interest-intent, we conduct structural refinement to uncover intricate user behavior patterns and item characteristics, leading to better interests learning. Finally, dual intents are fused for optimization.

$\mathcal{L}_{SSL}^{(user)_1} = -\sum_{u_j \in \mathcal{U}} \log \frac{\exp(\operatorname{sim}(\overline{\mathbf{u}}_j^{(s)}, \overline{\mathbf{u}}_j^{(i)}))}{\sum_{u_k \in \mathcal{U}} \exp(\operatorname{sim}(\overline{\mathbf{u}}_j^{(s)}, \overline{\mathbf{u}}_k^{(i)}))}, (5)$
$\mathcal{L}_{SSL}^{(user)_2} = -\sum_{u_j \in \mathcal{U}} \log \frac{\exp(\operatorname{sim}(\overline{\mathbf{u}}_j^{(i)}, \overline{\mathbf{u}}_j^{(s)}))}{\sum_{u_k \in \mathcal{U}} \exp(\operatorname{sim}(\overline{\mathbf{u}}_j^{(i)}, \overline{\mathbf{u}}_k^{(s)}))} \cdot (6)$
$\mathcal{L}_{SSL}^{(user)} = \mathcal{L}_{SSL}^{(user)_1} + \mathcal{L}_{SSL}^{(user)_2} $ (7)
$\hat{s}_{jt} = \overline{\mathbf{u}}_j \cdot \overline{\mathbf{g}}_t, (8)$
$\overline{\mathbf{U}} = [\overline{\mathbf{U}}^{(s)} \ \overline{\mathbf{U}}^{(i)}], \overline{\mathbf{G}} = [\overline{\mathbf{G}}^{(s)} \ \overline{\mathbf{G}}^{(i)}], (9)$
$\mathcal{L}_{BPR} = \sum_{(u_j, g_t, g_{t'}) \in \mathcal{D}} -\log \sigma(\hat{s}_{jt} - \hat{s}_{jt'}) + \lambda_2 \ \Theta\ _2^2, (10)$

Table 2: Statistics of datasets

Dataset	Mafengwo	Weeplaces	Steam
# Users	1,269	1,501	11,099
# Groups	972	4,651	1,085
# Items	999	6,406	2,351
# User-Group Participation	5,574	12,258	57,654
# User-Item Interactions	8,676	43,942	444,776
# Group-Item Interactions	2,540	6,033	22,318
Avg. # Groups/user	4.39	8.17	5.19
Avg. # Items/user	6.84	29.28	40.07
Avg. # Items/group	2.61	1.29	20.57

Experiment

Table 3: UGD Performance comparison on three datasets with Recall (R) reported.

Mathed Trme	Dataset	Mafengwo			Weeplaces			Steam		
Method Type	Metric	R@5	R@10	R@20	R@5	R@10	R@20	R@5	R@10	R@20
Group	AGREE(SIGIR'18)	0.1216	0.1716	0.2368	0.1680	0.2270	0.2911	0.1168	0.1768	0.2577
Recommendation	ConsRec _(WWW'23)	0.2204	0.3141	0.4063	0.2514	0.3472	0.4391	0.1690	0.2440	0.3330
	MF-BPR	0.1832	0.2407	0.2973	0.1734	0.2278	0.2822	0.1207	0.1848	0.2671
	NGCF(SIGIR'19)	0.1999	0.2650	0.3284	0.1787	0.2392	0.2961	0.1330	0.2010	0.2903
Recommender	LightGCN _(SIGIR'20)	0.2293	0.2930	0.3596	0.1791	0.2431	0.3069	0.1543	0.2343	0.3273
Systems	SGL _(SIGIR'21)	0.2259	0.2956	0.3555	0.1810	0.2443	0.3046	0.1535	0.2336	0.3276
	SimGCL _(SIGIR'22)	0.2309	0.2925	0.3585	0.1808	0.2477	0.3079	0.1544	0.2332	0.3271
	DCCF _(SIGIR'23)	0.2049	0.2649	0.3216	0.1858	0.2507	0.3171	0.1614	0.2417	0.3423
User-centric	CFAG _(WSDM'23)	0.2274	0.3242	0.4194	0.2855	0.3824	0.4893	0.1597	0.2485	0.3502
Group Discovery	DiRecours	0.2653	0.3585	0.4549	0.3177	0.4119	0.4987	0.1702	0.2685	0.3708

Experiment

Table 4: UGD Performance comparison on three datasets with NDCG (N) reported.

Mathad Tuma	Dataset	Mafengwo			Weeplaces			Steam		
Method Type	Metric	N@5	N@10	N@20	N@5	N@10	N@20	N@5	N@10	N@20
Group	AGREE _(SIGIR'18)	0.0887	0.1051	0.1218	0.1132	0.1330	0.1501	0.0742	0.0937	0.1143
Recommendation	ConsRec _(WWW'23)	0.1519	0.1832	0.2069	0.1714	0.2037	0.2283	0.1034	0.1335	0.1604
	MF-BPR	0.1293	0.1484	0.1631	0.1170	0.1358	0.1507	0.0771	0.0979	0.1190
	NGCF _(SIGIR'19)	0.1440	0.1655	0.1820	0.1213	0.1417	0.1572	0.0862	0.1082	0.1311
Recommender	LightGCN _(SIGIR'20)	0.1713	0.1922	0.2093	0.1225	0.1443	0.1619	0.1013	0.1274	0.1513
Systems	SGL _(SIGIR'21)	0.1718	0.1945	0.2099	0.1235	0.1448	0.1614	0.1018	0.1278	0.1520
	SimGCL _(SIGIR'22)	0.1725	0.1926	0.2095	0.1233	0.1460	0.1626	0.1015	0.1273	0.1514
	DCCF _(SIGIR'23)	0.1493	0.1691	0.1837	0.1256	0.1476	0.1659	0.1053	0.1314	0.1573
User-centric	CFAG _(WSDM'23)	0.1552	0.1867	0.2111	0.1938	0.2264	0.2551	0.1035	0.1324	0.1584
Group Discovery	DiRecours	0.1908	0.2208	0.2455	0.2246	0.2565	0.2797	0.1086	0.1405	0.1669

Table 5: Ablation Study on three datasets with NDCG (N) reported. "Social-" and "Interest-" refer to the variant that only utilizes social-intent and interest-intent, respectively. "w/o. HG" denotes the variant that replaces hypergraph modeling with bipartite graph modeling. And "w/o. UI Re." and "w/o. GI Aug." refer to variants that eliminate reweighting and augmentation, respectively.

Dataset	Mafe	ngwo	Weer	olaces	Steam		
Metric	N@10	N@20	N@10	N@20	N@10	N@20	
Full	0.2208	0.2455	0.2565	0.2797	0.1405	0.1669	
Social-	0.1954	0.2157	0.1593	0.1784	0.1373	0.1628	
Interest-	0.1561	0.1900	0.2426	0.2671	0.1097	0.1391	
w/o. HG	0.2110	0.2325	0.2490	0.2754	0.1253	0.1546	
w/o. UI Re.	0.2208	0.2453	0.2558	0.2788	0.1398	0.1664	
w/o. GI Aug.	0.2117	0.2393	0.2200	0.2417	0.1371	0.1639	
w/o. SSL	0.2194	0.2430	0.2525	0.2752	0.1395	0.1651	

Experiment

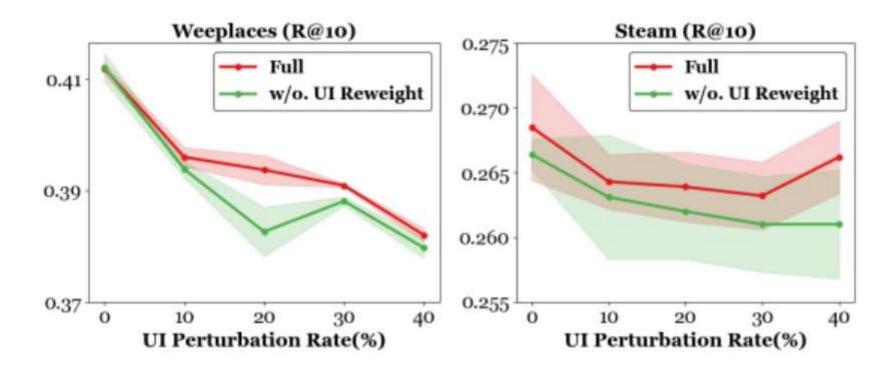


Figure 4: Performance comparison between DiRec and the variant the eliminates reweighting part under varying levels of user-item interaction perturbations.

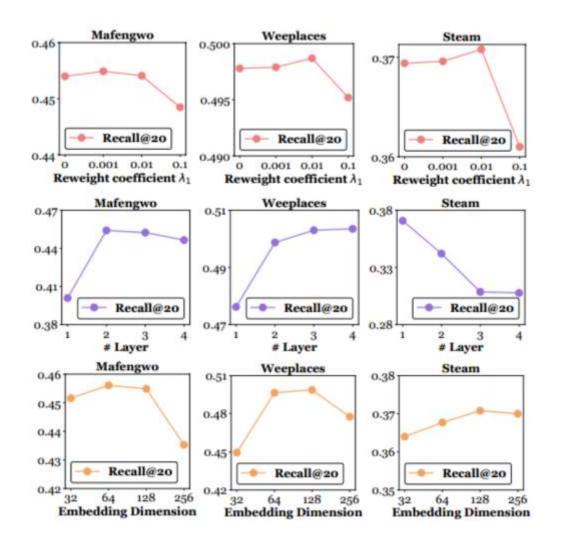


Figure 5: Parameters Study

Thank you!

